Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
BMC Infect Dis ; 24(1): 436, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658874

RESUMO

BACKGROUND: Studies have shown that Omicron breakthrough infections can occur at higher SARS-CoV-2 antibody levels compared to previous variants. Estimating the magnitude of immunological protection induced from COVID-19 vaccination and previous infection remains important due to varying local pandemic dynamics and types of vaccination programmes, particularly among at-risk populations such as health care workers (HCWs). We analysed a follow-up SARS-CoV-2 serological survey of HCWs at a tertiary COVID-19 referral hospital in Germany following the onset of the Omicron variant. METHODS: The serological survey was conducted in January 2022, one year after previous surveys in 2020 and the availability of COVID-19 boosters including BNT162b2, ChAdOx1-S, and mRNA-1273. HCWs voluntarily provided blood for serology and completed a comprehensive questionnaire. SARS-CoV-2 serological analyses were performed using an Immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA). Antibody levels were reported according to HCW demographic and occupational characteristics, COVID-19 vaccination and SARS-CoV-2 infection history, and multivariate linear regression was used to evaluate these associations. RESULTS: In January 2022 (following the fourth COVID-19 wave in Germany including the onset of the Omicron variant), 1482/1517 (97.7%) HCWs tested SARS-CoV-2 seropositive, compared to 4.6% in December 2020 (second COVID-19 wave). Approximately 80% had received three COVID-19 vaccine doses and 15% reported a previous laboratory-confirmed SARS-CoV-2 infection. SARS-CoV-2 IgG geometric mean titres ranged from 335 (95% Confidence Intervals [CI]: 258-434) among those vaccinated twice and without previous infection to 2204 (95% CI: 1919-2531) among those vaccinated three times and with previous infection. Heterologous COVID-19 vaccination combinations including a mRNA-1273 booster were significantly associated with the highest IgG antibody levels compared to other schemes. There was an 8-to 10-fold increase in IgG antibody levels among 31 HCWs who reported a SARS-CoV-2 infection in May 2020 to January 2022 after COVID-19 booster vaccination. CONCLUSIONS: Our findings demonstrate the importance of ongoing COVID-19 booster vaccination strategies in the context of variants such as Omicron and despite hybrid immunity from previous SARS-CoV-2 infections, particularly for at-risk populations such as HCWs. Where feasible, effective types of booster vaccination, such as mRNA vaccines, and the appropriate timing of administration should be carefully considered.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Pessoal de Saúde , Imunização Secundária , Imunoglobulina G , SARS-CoV-2 , Humanos , Pessoal de Saúde/estatística & dados numéricos , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/epidemiologia , Masculino , Feminino , Anticorpos Antivirais/sangue , Adulto , SARS-CoV-2/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Pessoa de Meia-Idade , Alemanha/epidemiologia , Imunoglobulina G/sangue , Seguimentos , Vacina BNT162/imunologia , Vacina BNT162/administração & dosagem , ChAdOx1 nCoV-19/imunologia , ChAdOx1 nCoV-19/administração & dosagem , Vacinação/estatística & dados numéricos , Estudos de Coortes
2.
Front Immunol ; 15: 1277447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633245

RESUMO

Modified vaccinia virus Ankara (MVA) has been widely tested in clinical trials as recombinant vector vaccine against infectious diseases and cancers in humans and animals. However, one biosafety concern about the use of MVA vectored vaccine is the potential for MVA to recombine with naturally occurring orthopoxviruses in cells and hosts in which it multiplies poorly and, therefore, producing viruses with mosaic genomes with altered genetic and phenotypic properties. We previously conducted co-infection and superinfection experiments with MVA vectored influenza vaccine (MVA-HANP) and a feline Cowpox virus (CPXV-No-F1) in Vero cells (that were semi-permissive to MVA infection) and showed that recombination occurred in both co-infected and superinfected cells. In this study, we selected the putative recombinant viruses and performed genomic characterization of these viruses. Some putative recombinant viruses displayed plaque morphology distinct of that of the parental viruses. Our analysis demonstrated that they had mosaic genomes of different lengths. The recombinant viruses, with a genome more similar to MVA-HANP (>50%), rescued deleted and/or fragmented genes in MVA and gained new host ranges genes. Our analysis also revealed that some MVA-HANP contained a partially deleted transgene expression cassette and one recombinant virus contained part of the transgene expression cassette similar to that incomplete MVA-HANP. The recombination in co-infected and superinfected Vero cells resulted in recombinant viruses with unpredictable biological and genetic properties as well as recovery of delete/fragmented genes in MVA and transfer of the transgene into replication competent CPXV. These results are relevant to hazard characterization and risk assessment of MVA vectored biologicals.


Assuntos
Coinfecção , Vacinas contra Influenza , Superinfecção , Chlorocebus aethiops , Animais , Gatos , Humanos , Vacinas contra Influenza/genética , Vírus da Varíola Bovina/genética , Células Vero , Vírus Vaccinia , Vacinas Sintéticas/genética , Sequenciamento Completo do Genoma
3.
BMJ Open ; 14(1): e072212, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38176860

RESUMO

OBJECTIVES: Healthcare workers (HCWs) are on the frontline of combating COVID-19, hence are at elevated risk of contracting an infection with SARS-CoV-2. The present study aims to measure the impact of SARS-CoV-2 on HCWs in central sub-Saharan Africa. SETTING: A cross-sectional serological study was conducted at six urban and five rural hospitals during the first pandemic wave in the South Kivu province, Democratic Republic of the Congo (DRC). PARTICIPANTS: Serum specimens from 1029 HCWs employed during the first pandemic wave were collected between August and October 2020, and data on demographics and work-related factors were recorded during structured interviews. PRIMARY AND SECONDARY OUTCOME MEASURES: The presence of IgG antibodies against SARS-CoV-2 was examined by ELISA. Positive specimens were further tested using a micro-neutralisation assay. Factors driving SARS-CoV-2 seropositivity were assessed by multivariable analysis. RESULTS: Overall SARS-CoV-2 seroprevalence was high among HCWs (33.1%), and significantly higher in urban (41.5%) compared with rural (19.8%) hospitals. Having had presented with COVID-19-like symptoms before was a strong predictor of seropositivity (31.5%). Personal protective equipment (PPE, 88.1% and 11.9%) and alcohol-based hand sanitizer (71.1% and 28.9%) were more often available, and hand hygiene was more often reported after patient contact (63.0% and 37.0%) in urban compared with rural hospitals, respectively. This may suggest that higher exposure during non-work times in high incidence urban areas counteracts higher work protection levels of HCWs. CONCLUSIONS: High SARS-CoV-2 seropositivity indicates widespread transmission of the virus in this region of DRC. Given the absence of publicly reported cases during the same time period at the rural sites, serological studies are very relevant in revealing infection dynamics especially in regions with low diagnostic capacities. This, and discrepancies in the application of PPE between urban and rural sites, should be considered in future pandemic response programmes.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Estudos Transversais , República Democrática do Congo/epidemiologia , Estudos Soroepidemiológicos , Anticorpos Antivirais , Pessoal de Saúde , Hospitais Rurais
4.
J Virol Methods ; 325: 114888, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38246565

RESUMO

We present an amplicon-based assay for MinION Nanopore sequencing of mpox virus (MPXV) genomes from clinical specimens, obtaining high-quality results with an average genome coverage of 99% for Ct values of up to 25, and a genome coverage of 97.1% for Ct values from 25 to 30 which are challenging to sequence. This assay is easy to implement in PCR-based workflows and provides accurate genomic data within a short time.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Vírus da Varíola dos Macacos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos
5.
J Med Virol ; 95(12): e29261, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38054557

RESUMO

The monkeypox virus (MPXV) outbreak in 2022 has renewed interest in the detection of antibodies against orthopox viruses (OPXV) and MPXV, as serological methods can aid diagnostics and are key to epidemiological studies. Here three complementary serological methods are described with different strengths to aid the development and evaluation of in-house assays: An immunofluorescence assay (IFA) for specific detection of IgG and IgM, an enzyme-linked immunosorbent assay for higher sample throughput to aid epidemiological studies and a neutralization test to detect virus neutralizing antibodies. As implementation of MPXV-specific diagnostics is often hampered by the requirement for a dedicated biosafety level 3 laboratory (BSL-3), the focus of this study is on biosafety aspects to facilitate safe testing also under BSL-2 conditions. To this aim, it was analyzed whether OPXV, which can be handled under BSL-2 conditions, could be used as less virulent alternatives to MPXV. Furthermore, an inactivation method was established to remove up to five log-steps of infectious virus particles from viraemic sera without compromising antibody detection. The results show that immunological cross-reactivity between OPXV provides an opportunity for the interchangeable usage of different OPXV species in serological assays, enabling MPXV serology outside of BSL-3 facilities.


Assuntos
Contenção de Riscos Biológicos , Vírus da Varíola dos Macacos , Humanos , Laboratórios , Anticorpos Antivirais , Testes de Neutralização
6.
Sci Rep ; 13(1): 21846, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071261

RESUMO

Serological assays measuring antibodies against SARS-CoV-2 are key to describe the epidemiology, pathobiology or induction of immunity after infection or vaccination. Of those, multiplex assays targeting multiple antigens are especially helpful as closely related coronaviruses or other antigens can be analysed simultaneously from small sample volumes, hereby shedding light on patterns in the immune response that would otherwise remain undetected. We established a bead-based 17-plex assay detecting antibodies targeting antigens from all coronaviruses pathogenic for humans: SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV strains 229E, OC43, HKU1, and NL63. The assay was validated against five commercial serological immunoassays, a commercial surrogate virus neutralisation test, and a virus neutralisation assay, all targeting SARS-CoV-2. It was found to be highly versatile as shown by antibody detection from both serum and dried blot spots and as shown in three case studies. First, we followed seroconversion for all four endemic HCoV strains and SARS-CoV-2 in an outbreak study in day-care centres for children. Second, we were able to link a more severe clinical course to a stronger IgG response with this 17-plex-assay, which was IgG1 and IgG3 dominated. Finally, our assay was able to discriminate recent from previous SARS-CoV-2 infections by calculating the IgG/IgM ratio on the N antigen targeting antibodies. In conclusion, due to the comprehensive method comparison, thorough validation, and the proven versatility, our multiplex assay is a valuable tool for studies on coronavirus serology.


Assuntos
COVID-19 , Coronavirus Humano OC43 , Coronavírus da Síndrome Respiratória do Oriente Médio , Criança , Humanos , SARS-CoV-2 , Imunidade Humoral , COVID-19/diagnóstico , COVID-19/epidemiologia , Imunoglobulina G , Anticorpos Antivirais
7.
mBio ; 14(5): e0188723, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37729584

RESUMO

IMPORTANCE: Modern smallpox vaccines, such as those used against mpox, are made from vaccinia viruses, but it is still unknown whether cowpox, horsepox, or vaccinia viruses were used in the early 20th century or earlier. The mystery began to be solved when the genomes of six historical smallpox vaccines used in the United States from 1850 to 1902 were determined. Our work analyzed in detail the genomes of these six historical vaccines, revealing a complex genomic structure. Historical vaccines are highly similar to horsepox in the core of their genomes, but some are closer to the structure of vaccinia virus at the ends of the genome. One of the vaccines is a recombinant virus with parts of variola virus recombined into its genome. Our data add valuable information for understanding the evolutionary path of current smallpox vaccines and the genetic makeup of the potentially extinct group of horsepox viruses.


Assuntos
Orthopoxvirus , Vacina Antivariólica , Varíola , Vírus da Varíola , Humanos , Vírus da Varíola/genética , Varíola/prevenção & controle , Duplicação Gênica , Vacina Antivariólica/genética , Vírus Vaccinia/genética , Orthopoxvirus/genética , Recombinação Genética
8.
Sci Rep ; 13(1): 13206, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580353

RESUMO

The COVID-19 pandemic illustrated the important role of diagnostic tests, including lateral flow tests (LFTs), in identifying patients and their contacts to slow the spread of infections. INSTAND performed external quality assessments (EQA) for SARS-CoV-2 antigen detection with lyophilized and chemically inactivated cell culture supernatant of SARS-CoV-2 infected Vero cells. A pre-study demonstrated the suitability of the material. Participants reported qualitative and/or quantitative antigen results using either LFTs or automated immunoassays for five EQA samples per survey. 711 data sets were reported for LFT detection in three surveys in 2021. This evaluation focused on the analytical sensitivity of different LFTs and automated immunoassays. The inter-laboratory results showed at least 94% correct results for non-variant of concern (VOC) SARS-CoV-2 antigen detection for viral loads of ≥ 4.75 × 106 copies/mL and SARS-CoV-2 negative samples. Up to 85% had success for a non-VOC viral load of ~ 1.60 × 106 copies/mL. A viral load of ~ 1.42 × 107 copies/mL of the Delta VOC was reported positive in > 96% of results. A high specificity was found with almost 100% negative SARS-CoV-2 antigen results for HCoV 229E and HCoV NL63 positive samples. Quantitative results correlated with increasing SARS-CoV-2 viral load but showed a broad scatter. This study shows promising SARS-CoV-2 antigen test performance of the participating laboratories, but further investigations with the now predominant Omicron VOC are needed.


Assuntos
COVID-19 , SARS-CoV-2 , Chlorocebus aethiops , Animais , Humanos , Pandemias , Células Vero , COVID-19/diagnóstico , COVID-19/epidemiologia , Testes Imunológicos , Sensibilidade e Especificidade
9.
Sci Rep ; 13(1): 12859, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553373

RESUMO

Bats are described as the natural reservoir host for a wide range of viruses. Although an increasing number of bat-associated, potentially human pathogenic viruses were discovered in the past, the full picture of the bat viromes is not explored yet. In this study, the virome composition of Miniopterus phillipsi bats (formerly known as Miniopterus fuliginosus bats in Sri Lanka) inhabiting the Wavul Galge cave, Sri Lanka, was analyzed. To assess different possible excretion routes, oral swabs, feces and urine were collected and analyzed individually by using metagenomic NGS. The data obtained was further evaluated by using phylogenetic reconstructions, whereby a special focus was set on RNA viruses that are typically associated with bats. Two different alphacoronavirus strains were detected in feces and urine samples. Furthermore, a paramyxovirus was detected in urine samples. Sequences related to Picornaviridae, Iflaviridae, unclassified Riboviria and Astroviridae were identified in feces samples and further sequences related to Astroviridae in urine samples. No viruses were detected in oral swab samples. The comparative virome analysis in this study revealed a diversity in the virome composition between the collected sample types which also represent different potential shedding routes for the detected viruses. At the same time, several novel viruses represent first reports of these pathogens from bats in Sri Lanka. The detection of two different coronaviruses in the samples indicates the potential general persistence of this virus species in M. phillipsi bats. Based on phylogenetics, the identified viruses are closely related to bat-associated viruses with comparably low estimation of human pathogenic potential. In further studies, the seasonal variation of the virome will be analyzed to identify possible shedding patterns for particular viruses.


Assuntos
Quirópteros , Coronavirus , Animais , Humanos , Filogenia , Viroma , Sri Lanka , Coronavirus/genética
10.
Virol J ; 20(1): 139, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37408040

RESUMO

BACKGROUND: Over the course of the COVID-19 pandemic, laboratories worldwide have been facing an unprecedented increase in demand for PCR testing because of the high importance of diagnostics for prevention and control of virus spread. Moreover, testing demand has been varying considerably over time, depending on the epidemiological situation, rendering efficient resource allocation difficult. Here, we present a scalable workflow which we implemented in our laboratory to increase PCR testing capacity while maintaining high flexibility regarding the number of samples to be processed. METHODS: We compared the performance of five automated extraction instruments, using dilutions of SARS-CoV-2 cell culture supernatant as well as clinical samples. To increase PCR throughput, we combined the two duplex PCR reactions of our previously published SARS-CoV-2 PCR assay into one quadruplex reaction and compared their limit of detection as well as their performance on the detection of low viral loads in clinical samples. Furthermore, we developed a sample pooling protocol with either two or four samples per pool, combined with a specifically adapted SARS-CoV-2 quadruplex PCR assay, and compared the diagnostic sensitivity of pooled testing and individual testing. RESULTS: All tested automated extraction instruments yielded comparable results regarding the subsequent sensitivity of SARS-CoV-2 detection by PCR. While the limit of detection of the quadruplex SARS-CoV-2 PCR assay (E-Gene assay: 28.7 genome equivalents (ge)/reaction, orf1ab assay: 32.0 ge/reaction) was slightly higher than that of our previously published duplex PCR assays (E-Gene assay: 9.8 ge/reaction, orf1ab assay: 6.6 ge/reaction), the rate of correctly identified positive patient samples was comparable for both assays. Sample pooling with optimized downstream quadruplex PCR showed no loss in diagnostic sensitivity compared to individual testing. CONCLUSION: Specific adaptation of PCR assays can help overcome the potential loss of sensitivity due to higher levels of PCR multiplexing or sample dilution in pooled testing. Combining these adapted PCR assays with different sample processing strategies provides a simple and highly adjustable workflow for resource-efficient SARS-CoV-2 diagnostics. The presented principles can easily be adopted in a variety of laboratory settings as well as be adapted to pathogens other than SARS-CoV-2, making it feasible for any laboratory that conducts PCR diagnostics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , Pandemias , Teste para COVID-19 , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade
11.
J Clin Virol ; 165: 105496, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37269606

RESUMO

BACKGROUND/PURPOSE: While current guidelines recommend the use of respiratory tract specimens for the direct detection of SARS-CoV-2 infection, saliva has recently been suggested as preferred sample type for the sensitive detection of SARS-CoV-2 B.1.1.529 (Omicron). By comparing saliva collected using buccal swabs and oro-/nasopharyngeal swabs from patients hospitalized due to COVID-19, we aimed at identifying potential differences in virus detection sensitivity between these sample types. METHODS: We compare the clinical diagnostic sensitivity of paired buccal swabs and combined oro-/nasopharyngeal swabs from hospitalized, symptomatic COVID-19 patients collected at median six days after symptom onset by real-time polymerase chain reaction (PCR) and antigen test. RESULTS: Of the tested SARS-CoV-2 positive sample pairs, 55.8% were identified as SARS-CoV-2 Omicron BA.1 and 44.2% as Omicron BA.2. Real-time PCR from buccal swabs generated significantly higher quantification cycle (Cq) values compared to those from matched combined oro-/nasopharyngeal swabs and resulted in an increased number of false-negative PCR results. Reduced diagnostic sensitivity of buccal swabs by real-time PCR was observed already at day one after symptom onset. Similarly, antigen test detection rates were reduced in buccal swabs compared to combined oro-/nasopharyngeal swabs. CONCLUSION: Our results suggest reduced clinical diagnostic sensitivity of saliva collected using buccal swabs when compared to combined oro-/nasopharyngeal swabs in the detection of SARS-CoV-2 Omicron in symptomatic individuals.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Saliva , Reação em Cadeia da Polimerase em Tempo Real , Nasofaringe , Manejo de Espécimes , Teste para COVID-19
12.
Nucleic Acids Res ; 51(W1): W331-W337, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37167010

RESUMO

The mpox virus (MPXV) is mutating at an exceptional rate for a DNA virus and its global spread is concerning, making genomic surveillance a necessity. With MpoxRadar, we provide an interactive dashboard to track virus variants on mutation level worldwide. MpoxRadar allows users to select among different genomes as reference for comparison. The occurrence of mutation profiles based on the selected reference is indicated on an interactive world map that shows the respective geographic sampling site in customizable time ranges to easily follow the frequency or trend of defined mutations. Furthermore, the user can filter for specific mutations, genes, countries, genome types, and sequencing protocols and download the filtered data directly from MpoxRadar. On the server, we automatically download all MPXV genomes and metadata from the National Center for Biotechnology Information (NCBI) on a daily basis, align them to the different reference genomes, generate mutation profiles, which are stored and linked to the available metainformation in a database. This makes MpoxRadar a practical tool for the genomic survaillance of MPXV, supporting users with limited computational resources. MpoxRadar is open-source and freely accessible at https://MpoxRadar.net.


Assuntos
Genoma Viral , Genômica , Vírus da Varíola dos Macacos , Software , Bases de Dados Factuais , Vírus da Varíola dos Macacos/genética
13.
Virus Genes ; 59(4): 532-540, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37256469

RESUMO

Poxviruses are known to evolve slower than RNA viruses with only 1-2 mutations/genome/year. Rather than single mutations, rearrangements such as gene gain and loss, which have been discussed as a possible driver for host adaption, were described in poxviruses. In 2022 and 2023 the world is being challenged by the largest global outbreak so far of Mpox virus, and the virus seems to have established itself in the human community for an extended period of time. Here, we report five Mpox virus genomes from Germany with extensive gene duplication and loss, leading to the expansion of the ITR regions from 6400 to up to 24,600 bp. We describe duplications of up to 18,200 bp to the opposed genome end, and deletions at the site of insertion of up to 16,900 bp. Deletions and duplications of genes with functions of supposed immune modulation, virulence and host adaption as B19R, B21R, B22R and D10L are described. In summary, we highlight the need for monitoring rearrangements of the Mpox virus genome rather than for monitoring single mutations only.


Assuntos
Poxviridae , Humanos , Duplicação Gênica , Genoma Viral/genética , Poxviridae/genética , Mutação
14.
Vaccine ; 41(20): 3171-3177, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37088603

RESUMO

The widespread outbreak of the monkeypox virus (MPXV) recognized in 2022 poses new challenges for public healthcare systems worldwide. With more than 86,000 people infected, there is concern that MPXV may become endemic outside of its original geographical area leading to repeated human spillover infections or continue to be spread person-to-person. Fortunately, classical public health measures (e.g., isolation, contact tracing and quarantine) and vaccination have blunted the spread of the virus, but cases are continuing to be reported in 28 countries in March 2023. We describe here the vaccines and drugs available for the prevention and treatment of MPXV infections. However, although their efficacy against monkeypox (mpox) has been established in animal models, little is known about their efficacy in the current outbreak setting. The continuing opportunity for transmission raises concerns about the potential for evolution of the virus and for expansion beyond the current risk groups. The priorities for action are clear: 1) more data on the efficacy of vaccines and drugs in infected humans must be gathered; 2) global collaborations are necessary to ensure that government authorities work with the private sector in developed and low and middle income countries (LMICs) to provide the availability of treatments and vaccines, especially in historically endemic/enzootic areas; 3) diagnostic and surveillance capacity must be increased to identify areas and populations where the virus is present and may seed resurgence; 4) those at high risk of severe outcomes (e.g., immunocompromised, untreated HIV, pregnant women, and inflammatory skin conditions) must be informed of the risk of infection and be protected from community transmission of MPXV; 5) engagement with the hardest hit communities in a non-stigmatizing way is needed to increase the understanding and acceptance of public health measures; and 6) repositories of monkeypox clinical samples, including blood, fluids, tissues and lesion material must be established for researchers. This MPXV outbreak is a warning that pandemic preparedness plans need additional coordination and resources. We must prepare for continuing transmission, resurgence, and repeated spillovers of MPXV.


Assuntos
Vacinas , Gravidez , Animais , Humanos , Feminino , /prevenção & controle , Vírus da Varíola dos Macacos , Vacinação , Surtos de Doenças/prevenção & controle
15.
PLoS One ; 18(4): e0285203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37115793

RESUMO

BACKGROUND: In May 2022, the monkeypox virus (MPXV) spread into non-endemic countries and the global community was quick to test the lessons learned from the SARS-CoV-2 pandemic. Due to its symptomatic resemblance to other diseases, like the non-pox virus varicella zoster (chickenpox), polymerase chain reaction methods play an important role in correctly diagnosing the rash-causing pathogen. INSTAND quickly established a new external quality assessment (EQA) scheme for MPXV and orthopoxvirus (OPXV) DNA detection to assess the current performance quality of the laboratory tests. METHODS: We analyzed quantitative and qualitative data of the first German EQA for MPXV and OPXV DNA detection. The survey included one negative and three MPXV-positive samples with different MPX viral loads. The threshold cycle (Ct) or other measures defining the quantification cycle (Cq) were analyzed in an assay-specific manner. A Passing Bablok fit was used to investigate the performance at laboratory level. RESULTS: 141 qualitative datasets were reported by 131 laboratories for MPXV detection and 68 qualitative datasets by 65 laboratories for OPXV detection. More than 96% of the results were correctly identified as negative and more than 97% correctly identified as positive. An analysis of the reported Ct/Cq values showed a large spread of these values of up to 12 Ct/Cq. Nevertheless, there is a good correlation of results for the different MPXV concentrations at laboratory level. Only a few quantitative results in copies/mL were reported (MPXV: N = 5; OPXV: N = 2), but the results correlated well with the concentration differences between the EQA samples, which were to a power of ten each. CONCLUSION: The EQA results show that laboratories performed well in detecting both MPXV and OPXV. However, Ct/Cq values should be interpreted with caution when conclusions are drawn about the viral load as long as metrological traceability is not granted.


Assuntos
COVID-19 , Orthopoxvirus , Humanos , Vírus da Varíola dos Macacos/genética , SARS-CoV-2/genética
16.
Euro Surveill ; 28(16)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37078884

RESUMO

BackgroundThere are conflicting reports on the performance of rapid antigen detection tests (RDT) in the detection of the SARS-CoV-2 Omicron (B.1.1.529) variant; however, these tests continue to be used frequently to detect potentially contagious individuals with high viral loads.AimThe aim of this study was to investigate comparative detection of the Delta (B.1.617.2) and Omicron variants by using a selection of 20 RDT and a limited panel of pooled combined oro- and nasopharyngeal clinical Delta and Omicron specimens.MethodsWe tested 20 CE-marked RDT for their performance to detect SARS-CoV-2 Delta and Omicron by using a panel of pooled clinical specimens collected in January 2022 in Berlin, Germany.ResultsWe observed equivalent detection performance for Delta and Omicron for most RDT, and sensitivity was widely in line with our previous pre-Delta/Omicron evaluation. Some variation for individual RDT was observed either for Delta vs Omicron detection, or when compared with the previous evaluation, which may be explained both by different panel sizes resulting in different data robustness and potential limitation of batch-to-batch consistency. Additional experiments with three RDT using non-pooled routine clinical samples confirmed comparable performance to detect Delta vs Omicron. Overall, RDT that were previously positively evaluated retained good performance also for Delta and Omicron variants.ConclusionOur findings suggest that currently available RDT are sufficient for the detection of SARS-CoV-2 Delta and Omicron variants.


Assuntos
Teste Sorológico para COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , Berlim , COVID-19/diagnóstico , Alemanha , SARS-CoV-2/genética , Teste Sorológico para COVID-19/métodos
17.
Pathogens ; 12(4)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37111436

RESUMO

SARS-CoV-2 serosurveillance is important to adapt infection control measures and estimate the degree of underreporting. Blood donor samples can be used as a proxy for the healthy adult population. In a repeated cross-sectional study from April 2020 to April 2021, September 2021, and April/May 2022, 13 blood establishments collected 134,510 anonymised specimens from blood donors in 28 study regions across Germany. These were tested for antibodies against the SARS-CoV-2 spike protein and nucleocapsid, including neutralising capacity. Seroprevalence was adjusted for test performance and sampling and weighted for demographic differences between the sample and the general population. Seroprevalence estimates were compared to notified COVID-19 cases. The overall adjusted SARS-CoV-2 seroprevalence remained below 2% until December 2020 and increased to 18.1% in April 2021, 89.4% in September 2021, and to 100% in April/May 2022. Neutralising capacity was found in 74% of all positive specimens until April 2021 and in 98% in April/May 2022. Our serosurveillance allowed for repeated estimations of underreporting from the early stage of the pandemic onwards. Underreporting ranged between factors 5.1 and 1.1 in the first two waves of the pandemic and remained well below 2 afterwards, indicating an adequate test strategy and notification system in Germany.

18.
Infection ; 51(4): 1093-1102, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36913112

RESUMO

PURPOSE: COViK, a prospective hospital-based multicenter case-control study in Germany, aims to assess the effectiveness of COVID-19 vaccines against severe disease. Here, we report vaccine effectiveness (VE) against COVID-19-caused hospitalization and intensive care treatment during the Omicron wave. METHODS: We analyzed data from 276 cases with COVID-19 and 494 control patients recruited in 13 hospitals from 1 December 2021 to 5 September 2022. We calculated crude and confounder-adjusted VE estimates. RESULTS: 21% of cases (57/276) were not vaccinated, compared to 5% of controls (26/494; p < 0.001). Confounder-adjusted VE against COVID-19-caused hospitalization was 55.4% (95% CI: 12-78%), 81.5% (95% CI: 68-90%) and 95.6% (95%CI: 88-99%) after two, three and four vaccine doses, respectively. VE against hospitalization due to COVID-19 remained stable up to one year after three vaccine doses. CONCLUSION: Three vaccine doses remained highly effective in preventing severe disease and this protection was sustained; a fourth dose further increased protection.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Estudos de Casos e Controles , Estudos Prospectivos , Eficácia de Vacinas , Alemanha/epidemiologia
19.
Front Immunol ; 14: 1056525, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798117

RESUMO

Currently available COVID-19 vaccines include inactivated virus, live attenuated virus, mRNA-based, viral vectored and adjuvanted protein-subunit-based vaccines. All of them contain the spike glycoprotein as the main immunogen and result in reduced disease severity upon SARS-CoV-2 infection. While we and others have shown that mRNA-based vaccination reactivates pre-existing, cross-reactive immunity, the effect of vector vaccines in this regard is unknown. Here, we studied cellular and humoral responses in heterologous adenovirus-vector-based ChAdOx1 nCOV-19 (AZ; Vaxzeria, AstraZeneca) and mRNA-based BNT162b2 (BNT; Comirnaty, BioNTech/Pfizer) vaccination and compared it to a homologous BNT vaccination regimen. AZ primary vaccination did not lead to measurable reactivation of cross-reactive cellular and humoral immunity compared to BNT primary vaccination. Moreover, humoral immunity induced by primary vaccination with AZ displayed differences in linear spike peptide epitope coverage and a lack of anti-S2 IgG antibodies. Contrary to primary AZ vaccination, secondary vaccination with BNT reactivated pre-existing, cross-reactive immunity, comparable to homologous primary and secondary mRNA vaccination. While induced anti-S1 IgG antibody titers were higher after heterologous vaccination, induced CD4+ T cell responses were highest in homologous vaccinated. However, the overall TCR repertoire breadth was comparable between heterologous AZ-BNT-vaccinated and homologous BNT-BNT-vaccinated individuals, matching TCR repertoire breadths after SARS-CoV-2 infection, too. The reasons why AZ and BNT primary vaccination elicits different immune response patterns to essentially the same antigen, and the associated benefits and risks, need further investigation to inform vaccine and vaccination schedule development.


Assuntos
Vacina BNT162 , COVID-19 , ChAdOx1 nCoV-19 , Reações Cruzadas , Humanos , Vacina BNT162/imunologia , ChAdOx1 nCoV-19/imunologia , COVID-19/prevenção & controle , Receptores de Antígenos de Linfócitos T , SARS-CoV-2 , Vacinação
20.
Virol J ; 20(1): 21, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747188

RESUMO

BACKGROUND: SARS-CoV-2 replicates efficiently in the upper airways of humans and produces high loads of virus RNA and, at least in the initial phase after infection, many infectious virus particles. Studying virus ultrastructure, such as particle integrity or presence of spike proteins, and effects on their host cells in patient samples is important to understand the pathogenicity of SARS-CoV-2. METHODS: Suspensions from swab samples with a high load of virus RNA (Ct < 20) were sedimented by desktop ultracentrifugation and prepared for thin section electron microscopy using a novel method which is described in detail. Embedding was performed in Epon or in LR White resin using standard or rapid protocols. Thin sections were examined using transmission electron microscopy. RESULTS: Virus particles could be regularly detected in the extracellular space, embedded in a background of heterogenous material (e.g. vesicles and needle-like crystals), and within ciliated cells. Morphology (i.e. shape, size, spike density) of virus particles in the swab samples was very similar to particle morphology in cell culture. However, in some of the samples the virus particles hardly revealed spikes. Infected ciliated cells occasionally showed replication organelles, such as double-membrane vesicles. The most common cells in all samples were keratinocytes from the mucosa and bacteria. CONCLUSIONS: The new method allows the ultrastructural visualization and analysis of coronavirus particles and of infected host cells from easy to collect naso/oropharyngeal patient swab samples.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Manejo de Espécimes/métodos , Microscopia Eletrônica de Transmissão , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...